L(p, q) labeling of d-dimensional grids
نویسندگان
چکیده
In this paper, we address the problem of λ labelings, that was introduced in the context of frequency assignment for telecommunication networks. In this model, stations within a given radius r must use frequencies that differ at least by a value p, while stations that are within a larger radius r′ > r must use frequencies that differ by at least another value q. The aim is to minimize the span of frequencies used in the network. This can be modeled by a graph coloring problem, called the L(p, q) labeling, where one wants to label vertices of the graph G modeling the network by integers in the range [0; M ], in such a way that (1) neighbors in G are assigned colors differing by at least p and (2) vertices at distance 2 in G are assigned colors differing by at least q, while minimizing the value of M . M is then called the λ number of G, and is denoted by λpq(G). In this paper, we study the L(p, q) labeling for a specific class of networks, namely the d-dimensional grid Gd = G[n1, n2 . . . nd]. We give bounds on the value of the λ number of an L(p, q) labeling for any d ≥ 1 and p, q ≥ 0. Some of these results are optimal (namely, in the following cases : (1) p = 0, (2) q = 0, (3) q = 1 (4) p, q ≥ 1, p = α · q with 1 ≤ α ≤ 2d and (5) p ≥ 2dq + 1) ; when the results we obtain are not optimal, we observe that the bounds differ by an additive factor never exceeding 2q − 2. The optimal result we obtain in the case q = 1 answers an open problem stated by Dubhashi et al. [DMP02], and generalizes results from [BPT00] and [DMP02]. We also apply our results to get upper bounds for the L(p, q) labeling of d-dimensional hypercubes.
منابع مشابه
Edge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملSkolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملSuper Pair Sum Labeling of Graphs
Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...
متن کاملToroidal Grids Are Anti-magic
An anti-magic labeling of a finite simple undirected graph with p vertices and q edges is a bijection from the set of edges to the integers {1, ..., q} such that all p vertex sums are pairwise distinct, where the vertex sum on a vertex is the sum of labels of all edges incident to such vertex. A graph is called anti-magic if it has an anti-magic labeling. Hartsfield and Ringel [3] conjectured t...
متن کاملEdge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007